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The definition of artificial intelligence and the associated tasks of this bnnch of science are discussed. The 
tasks include pattern recognition, adaptation and learning, problem solving by means of expert systems or 
neural networks, and understanding the natural language and communication with a machine in it. The 
principles of problem solving are analyzed. It is demonstrated how artificial intelligence-bad computer 
programs in which chemical expertise is encoded assist in structure elucidation, in the investigation of rela- 
tions between structure and biological activity or chromatographic retention, etc.; problems emerging in the 
synthesis planning with a mtrosynthetic analysis, or in the planning of experiments and intelligent consult- 
ations am d a l t  with. Several models used for structure elucidation and synthesis planning are evaluated. 
An overview is presented of additional expert systems which, along with artificial intelligence-based robo- 
tics, are used in intelligent instrumentation. Also discussed is the role of neural networks, which begin to 
be successfully employed in structure elucidation, synthesis planning, in intelligent instrumentation and in 
the treatment of natural languages. They are expected to be an important tool in the implementation of 
intelligent systems for the classification of chemical databases and prediction of properties of molecules. 

1. INTRODUCTION 

After 25 years of development, artificial intelligence begins to come to the fore for 
application not only in science and health service but also in the diverse branches of 
industry including banking and commerce1 - j. The increased interest of industrial 
companies in the application of artificial intelligence is a consequence of advancing 
automation of the management and control process where conventional technology fails 
to fulfil such tasks. 

The most important field of research into and application of artificial intelligence 
involves expert and knowledge-based systems, which function not only on special, so- 
called LISP-machines but now also on conventional computers ranging from PC’s to 
mainframes. Work on increasing the efficiency of expert systems is in progress; this 
can be achieved by a suitable integration of expert systems with the existing data 
processing environment, i.e. with various data banks, or by applications which are set 
up, e.g., in COBOL, PL 1 or ASSEMBLER. Another field of interest concerns systems 
using natural language, speech discrimination, intelligent text recognition, machine 
translations and neural networks. No rapid progress of these technologies is expected in 
the near future. The new role of information systems which will actively use artificial 
intelligence principles will be important as well. On the whole, a rapid growth of 
intelligent technologies is expected in the 1990’s. 

2. INTELLIGENCE AND ARTIFICIAL INTELLIGENCE 

Intelligence can be related to reasoning, capability of perception, and opinions. The 
German psychologist W. Stern, the originator of the idea of the intelligent quotient, 
regarded intelligence as the ability to adapt to new (unknown) tasks and life conditions. 
Intelligence can also be considered to be the assembly of intellectual abilities, enabling 
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acquired knowledge to be used efficiently in the solution of new (unknown), theoretical 
and/or practical problems4. 

Artificial intelligence is the application of mathematical techniques and/or mathe- 
matical logic in research devoted to any aspect of intelligence, done by technical or 
theoretical  mean^^*^. 

Artificial intelligence can also be characterized as follows’: “Artificial intelligence is 
the property of man-made systems having the ability to recognize objects, phenomena 
and situations, to analyze relationships between them and so to create internal models 
of the world in which these systems exist, and based on that, to make reasonable deci- 
sions and, by means of their capabilities of predicting consequences of such decisions, 
to disclose new regularities between the various models or their groups”. Based on that 
characteristics, the tasks of artificial intelligence can be divided into the following 
groups: 

a) Pattern recognition 
b) Adaptation and learning 
c) Problem solving by means of expert, knowledge-based and hybrid systems 
d) Understanding natural language and communication with machines in natural 

language. 

2.1. P A T ”  RECOGNITION 

Pattern recognition deals with the problem of dividing objects into classes. For this task 
to be meaningful, one has first to define the system, i.e. to specify the aspect according 
to which the object is examined, to establish the set of quantities which will be exami- 
ned and measured for the object, and to define the time, spatial and resolution levels of 
measurement. Systems, and hence objects for which they have been defined, can be 
divided into two or more classes based on identical Or mutually closely approaching 
values of measured quantities or other characteristics extracted from the quantities. The 
set of measured quantities is usually referred to as the image. 

At present, pattern recognition tasks include the processes of quantity measurement, 
image formation and image classification. Pattern recognition methods are classed in 
two major groups with respect to the image representation used: 

a) Symptom methods 
6) Structural methods. 
In symptom methods, images are represented by n-dimensional vectors of numerical 

values - symptoms. To each vector is attributed a single point in the n-dimensional, 
so-called image space. 

In structural methods, images are described by sets of basic descriptive elements - 
primitives, their properties and interrelations. Primitives are the minimal qualitative 
characteristics which are determined in the image. The structural methods are also 
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referred to as syntactic or linguistic methods because they are similar to those applied 
to the investigation of the structure of sentences and the grammatical structure of the 
natural language. 

Methods of two-class classification (machine learning)' and multicategorial pattern 
recognition methods (KNV, branching treelo, SIMCA", cluster methodsI2) have found 
application in analytical chemistry. Pattern recognition applications in chemistry have 
been reviewed in p~blications'~ - 21. Pattern recognition methods and algorithms are 
also used in practice such as technical and medical diagnostics, aerial and satellite 
photograph processing, etc. Computer visualization and robotics are two wide fields of 
application of pattern recognition techniques. 

2.2. ADAPTATION AND LEARNING 

An important property of living organisms is their ability to adapt or to learn based on 
their experience. Equipping technological systems with this ability is one of the goals 
of artificial intelligence. In technical learning systems, the learning stage is usually 
separated from the stage of function of the system. During the learning, a finite so- 
called training set of cases is submitted to the system; usually, each element of the set 
is supplemented with tutor's information about the expected response of the system 
(tutorial learning). If information from the tutor is lacking, the learning is without a 
tutor. Learning can be regarded as an individual process of adjusting the optimum para- 
meters (occasionally also the structure) of the system22. After the learning is finished, 
the system is optimally adjusted, by means of the criterion chosen, with respect to the 
training set. In the later function of the system it is assumed that the statistical charac- 
teristics of the set of problems solved do not differ appreciably from the characteristics 
of the training set. 

In pattern recognition tasks, learning serves to find the decision rule. In symptom 
methods, parameters of the decision rule are sought in a form which is known before- 
hand; the decision rule itself can also be sought. In syntactic methods, appropriate 
grammar is to be derived from available words of the language. 

Learning methods also begin to find use in the field of expert systems, in the induc- 
tive building of the knowledge base or its part if some expert knowledge is lacking. 

Adaptation and learning methods are used now with success in setting up a mathe- 
matical description of objects and systems, in designing adaptive industrial regulators 
and control algorithms, in pattern recognition when adjusting decision vectors, and in 
robotics in generating and implementing motions of the robots. 
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2.3. PROBLEM SOLVING 

A significant feature of intelligent systems is their ability to form an internal model of 
the environment (world) and to work with it. If the starting and target states of the 
environment are described, a sequence of actions is subsequently sought by which it is 
possible to pass from the starting model to the target model. This sequence can be 
referred to as the plan and the methods of creating plans, as problem solving. Various 
procedures can be applied to the plan creation. Mentally simplest is the ”blind” 
exhaustive search through the state space. Leading to a combinatorial explosion of the 
possible solutions, this approach has a limited applicability. Search is manageable in a 
reasonable time only by using problem-oriented knowledge, the so-called heuristics. 
The extent of unavoidable search depends on the heuristics efficiency. The system will 
be the more intelligent the less it will have to search through the state space7. 

2.3.1. Representation of Knowledge 

An important problem which is related to problem solving is that of an efficient repre- 
sentation and use of knowledge. This problem cannot be disregarded in any artificial 
intelligence project because the computer does not work with physical objects; it inva- 
riably works with some symbolic representation. And the choice of a particular repre- 
sentation can have a substantial effect on the resulting effect of the whole project. 

The declarative way of knowledge representationU has found wide application. The 
knowledge of the problem state is expressed by descriptions of discrete states and the 
descriptions of the possible changes are expressed by descriptions of operators. Among 
declarative procedures of representation of knowledge is that based on predicate calcu- 

- z6, Predicate calculus also enables the procedural aspect of knowledge repre- 
sentation. In procedural representations, attention is centered on specifying the 
possibilities of manipulation with objects, with their properties and interrelationsz7. The 
language PLANNERz is the best known language enabling a procedural representation 
of knowledge. 

Efforts to express semantic relationships within the problem environment directly in 
the formalism of the representation led to the creation of means of semantic repre- 
sentationz9. So-called semantic networks30 can be imagined as oriented graphs with 
evaluated vertices and edges. The vertices of the semantic network correspond to 
objects, notions, conceptions, ideas, relationships, functions, activities, etc. The edges 
denote the membership of the object in a higher-level notion, the relation of notions to 
higher-level notions such as “who”, “what”, “what about”, etc. 

The last way of representation is frame repre~entation~l. The frame is a structure 
representing a stereotypic situation. It is a date structure containing simultaneously all 
relevant knowledge concerning the object in question. Frames resemble semantic 
networks but they have a deeper structure. Frames can also be combined into frame 
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systems which can act as separate frames and also enable the procedural aspect of the 
problem environment. 

Knowledge representation is actually a way of recording knowledge in the computer. 
The choice of a suitable knowledge representation as a scheme for expressing and 
storing in the computer memory must be an appropriate compromise between the requi- 
rement of the semantic association of knowledge (requirements that data concerning 
one object should be located in the memory block “close to one another” along with 
information on their interrelations) and the requirement of modularity (requirement that 
there should be possible a simple expansion and modification of the knowledge stored). 
Formalisms of semantic networks, frames and scenes are examples of association of 
related knowledge, whereas production systems or 1st order predicate logic rules are 
examples of modular representation. For real systems, several basic formalisms of 
knowledge representation are usually combined so that the representation for the given 
field of knowledge be as convenient and appropriate as possible. 

2.3.2. Manipulation with Knowledge. Production Systems and Inference 
Mechanisms 

For the system to be able to solve a given problem, it must be able, by means of general 
data of the given field (declarative knowledge) and certain rules (procedural 
knowledge) to find the best solution. The control of this reasoning process depends 
strongly on the kind of field solved and on the knowledge representation. Production 
systems proved to provide a very convenient formalism, affording a unified conceptual 
and methodological basis. A production system is composed of the main data structure 
(global database), a set of production rules, and a control system3’- 

The global database is a data structure (used as the buffer) in which knowledge of the 
states of the world described by means of the production system is stored in a specific 
manner. Fields, lists, or sets of arranged n-tuples can constitute the internal structure of 
the global database. 

The production rule can involve logic elements which are similar to the conditional 
expressions in the majority of programming languages, which can be formulated in the 
form: “If a situation has occurred, then derive consequences (their solution)”. 

The control system works in a simple cycle: 
A) Checks whether actual data satisfy the condition for termination (by calling a 

routine testing its validity on data); if this is the case, the function of the production 
system ends (the world described by this system arrives at the target state) and the 
control system issues the sequence of rules that have consecutively been applied on the 
way to the target database. 

Else, 
B) a rule whose conditions is met in the actual database is selected; this step assumes 

that the control system has available a comparison routine (which knows how to 
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evaluate the conditions of the rules and decide whether they are satisfied in the data- 
base) as well as a routine which in some way selects one of several applicable rules. 
Finally it 

C) applies the selected rule (calls a routine which implements the corresponding 
change in the database), records it along with the database which has emerged from the 
implementation, and returns to the first step of the cycle. 

This way of function of the production system is called forward chaining or data- 
controlled procedure. The conditions of the rules are tested on given input data, some 
of the usable rules are applied, the database is then changed, another applicable rule is 
chosen, the database is additionally changed, and this is repeated until the database 
meeting the termination condition - the target database - emerges. The reverse 
approach, viz. backward chaining or the target-controlled procedure, is also applicable. 

The strategy for selecting a suitable rule which will actually be applied can be irre- 
versible, such as the steepest ascent method, or reversible. From among the reversible 
strategies, the backtracking strategy and the graph search strategy or the controlled 
graph search (heuristic) strategy33 are worth mentioning. 

A specific group is formed by the so-called decomposable production s y ~ t e m s ’ ~ ~ ~ ~ ~ ~ .  
During their performance, these systems create a more general structure of the so-called 
AND/OR graph. This consists of a set of knots and a set of connectors. The interpre- 
tation of this structure with respect to decomposable production systems is as follows: 
Knots of the AND/OR graph correspond to particular data. The starting knot 
corresponds to input data. If these are decomposable, a connectors goes from the 
starting knot to the set of immediate successors, corresponding to input data compo- 
nents (simple data). Target knots correspond to simple data satisfying the termination 
condition. The connector corresponds to the application of the production rule. Its 
parent knot is evaluated with simple data to which the rule is applied, and the knots in 
which the connector ends correspond to simple data which emerged from the imple- 
mentation of the rule and decomposition of the obtained compound data into the 
components. 

Decomposable systems thus define an implicit AND/OR graph with a given starting 
knot and a set of target knots, and during their performance they explicitly create its 
subgraph - the search graph - by gradual expansion of selected knots. The problem 
solving consists in controlling the performance of the production system so that the 
search graph formed should include the so-called solving graph (from the starting knot 
to the set of target knots). 

Problems solving in a production system can also be treated by using the first order 
theory (axioms and inference rules) or by resolution methods of proof. Various stra- 
tegies such as the supporting set strategy or the unit ~trategy”f’~ can be used when 
implementing the resolution method. 

Collect Czech C h m .  Commun (Vd. 67) (1881) 
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2.3.3. ProbZem Solving by Means of Expert, Knowledge-Based and Hybrid Systems 

Expert and knowledge-based systems dominate in the field of artificial intelligence 
appl ica t i~ns~~.  Hybrid systems, which are combinations of expert systems and neural 
networks, also show promise. 

An expert system is a program system for automatic solution of a class of real 
problems which are so complex that this is usually done by a person who is specialist 
in the field in questiona. The expert system emulates (imitates) the reasoning of the 
expert - specialist in the narrow problem field when solving tasks which to the user are 
important but too complex to solve. The aim of expert systems is to support (alleviate) 
the decision-making of personnel whose professional knowledge and experience stand- 
ard is relatively lower. 

Furthermore, an expert system is (viz. refs41t42): 
1) Heuristic, i.e. the reasoning is based on formal, theoretically founded knowledge 

as well as on intuitive informal knowledge 
2) Transparent, i.e. provides explanation of its reasoning procedure and answers 

questions concerning its knowledge 
3) Flexible, because it can work with spurious, noise-containing data and is able to 

gradually integrate new knowledge into its existing knowledge structure. 
Expert systems, as intelligent knowledge-based systems, are a particular and very 

rich but not the single existing subset of knowledge-based systems43. A characteristic 
feature of both systems is a strict separation of knowledge (which is usually problem- 
dependent) and calculation control - reasoning (which is usually problem-inde- 
pendent). This principle governs the basic architecture of the resulting system. The 
basic structure of the expert or knowledge-based system includes essentially three 
components, viz. the knowledge base, the inference mechanism and the global data- 
baseM. 

The knowledge base comprises a summary of structured general knowledge 
concerning the problem field, which is usually narrow. The aim of the knowledge base 
is to represent relations among the various conceptions of the field in question. 

The global database is a temporary working database which is filled (instantialized) 
and updated during the inference (consultation), each concept having no more than one 
instance during the inference. The inference process is in a sense determined by the 
global database updating sequence, an explicit record of this sequence being usually a 
part of the global database. In the concluding stage the expert system provides a 
suitable representation of the final form of the global database. 

Thus, the main functions of expert or knowledge-based systems include: 
a) Knowledge acquisition, creation and modification of the knowledge base 
b) Knowledge use - inference, consultation 
c) Explanation of the knowledge itself (static) as well as of the results of the inference 

procedure (dynamic). 
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Expert systems also possess features which differentiate them from knowledge-based 
systems. While the aim of expert systems is to emulate the expert’s reasoning, the aim 
of knowledge-based systems is to accumulate and use specific knowledge obtained 
from the expert or from another source (a book for instance) in the problem solving. 
The way of handling the knowledge of the “behaviour of the system” may be different 
from that used by the expert. Also, some knowledge-based systems may lack the expla- 
natory function or facility for substantiating the conclusions they have arrived at. 

2.3.3.1. Classification of Expert Systems 

With respect to the knowledge representation, systems based on production rules are 
the most widespread among expert systems. Contemporary expert systems employ two 
techniques for handling the rules: 

A) Rules are activated by forward chaining in the order of their logical linking 
B) Rules are all activated simultaneously or in a mutual sequence which is not 

directly dependent on the link between the rules (because this does not function on 
computers equipped with a single processor). 

The second group of expert systems, with respect to the representation of knowledge, 
comprises systems based on logical prograrnmix~g~~, in which knowledge is expressed 
in the form of formulas, and proofs of truthfulness of the system of such formulas are 
derived. 

The third group is formed by expert systems which are based on frames (data structu- 
res comprising complex information on objects, on object classes, etc.). 

With respect to the character of the problems solved, the existing expert systems can 
be classed in two groups, viz. diagnostic systems and planning systems. 

The task of diagnostic expert systems is to perform efficient data interpretation with 
the aim to find which hypothesis from an a priori given finite set of target hypotheses 
corresponds best to the real data which concern a given finite case. Such systems of 
classification nature solve the problem by gradual evaluation of the individual target 
hypotheses within a firmly given internal (machine) model of the problem, which is 
entered by the expert, usually in the form of an inference network. 

Planning expert systems usually solve problems where the goal and the starting state 
of the solution are known and the system uses data concerning the particular case to 
find a sequence of steps (operators) by means of which the goal can be reached, 
Planning systems are based on the principle of generating and testing permissible solu- 
tions. A substantial component of such expert systems is a generator of possible solu- 
tions which automatically combines the sequence of operators. Expert’s knowledge and 
data on the particular case solved are used to substantially reduce the combinatorial 
explosion of the examined solutions proposed by the generator. 

With respect to universality and closedness, expert systems can be classed into prob- 
lem-oriented expert systems with a used representation of knowledge and a control 
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mechanism to solve problems within a certain problem field only, into shells (problem- 
independent, without a knowledge base), universal tools for creating shells, and ready 
(closed) applications of expert systems. 

2.3.3.2. Tools for Creating Expert Systems 

The principle of strict separation of knowledge and control of the calculation - reaso- 
ning in the expert system - also governs the nature and structure of the tool. 

Software tools serving the development of expert and knowledge-based systems can 
be classed in six levels, viz. machine language, operating systems, higher-level 
programming language, environment, tool, and ~ h e 1 1 ~ 1 ~ ~ .  

Although any algorithm can be programmed in any conventional programming 
language (Fortran, Algol, Pascal, C), the use of such languages for artificial intelligence 
purposes is rather low efficient and more or less inappropriate. The nature of artificial 
intelligence usually requires - in contrast to classical calculations - efficient handling 
of data in a symbolic form and with a rich internal structure (lists, chains, sets, trees), a 
mechanism for returning during state-space search, associative memory, and a mecha- 
nism for automatic inference. Language  LISP^, a tool for functional programming, was 
set up in the early 1960s; its dialects4’, viz. INTERLISP, ZETALISP and MACLISP 
followed. The first language to satisfy the above requirements was PLA”ER50, 
which, however, was never implemented to the full extent. At present, much attention 
is given to the language PROLO@’ - 53, which is based on formulas of the language of 
1st order predicate logic. While LISP is most popular in the USA, PROLOG is most 
widespread in E u r ~ p e ~ ~ i ~ ~ .  Another well-known language is FORTHs6. The object- 
oriented languages SMALLTALKs7 and AIFtELLE58 - ‘’ also have a high standard. 
Versions of object-oriented Pascal and C, as well as C t t ,  are available from several 
vendors. 

At a somewhat higher level is the language OPS 5 (ref?’), which was set up at 
Carnegie-Mellon University with the initial aim to examine in more detail mechanisms 
of human reasoning and memory based on production rules. Facts are represented in the 
system as objects with attributes and values. The inference mechanism encompasses 
three cyclically repeating algorithms: rule matching, rule choice and rule imple- 
mentation. Its strategy consists in forward chaining enabling also back chaining simu- 
lation. OPS 5 stores objects in the so-called working memory and rules, in the so-called 
production memory. The advantage of OPS 5 consists in an efficiency of calculation, 
which is achieved owing to the so-called Rete-algorithm using a special organization of 
the production memory. At the beginning, rules are compiled and stored in the form of 
an oriented graph which enables efficient matching to the contents of the working 
memory. The initial version was implemented on LISP-machines, VAX-11 computers 
and IBM PC’s. Updated versions are augmented with graphic communication and 
Windows. 

Collect Czwh Chern. h m u n  Wol. 57) (1992) 
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In the late 1970's and early 1980's, universal modular systems, shells, began to be 
developed for the generation of expert and knowledge-based systems. In such shells, or 
in the programming environment or hybrid tools, only some components (e.g. the infe- 
rence strategy or representation scheme) are prefabricated and fixed but they are not 
firmly linked into the functional unit. In this case the process of creation consists in the 
creation or modification of the remaining components (usually at the programming 
language level) and linking the fixed and completed parts into a functioning unit. In a 
sense these universal systems can be regarded as special, very high level programming 
languages. Among the best-known universal systems are KEE47, ARp7, Knowledge 
Craft47, R163, ROSIE64, M165, POPLOG66i67, US6',  EXPERP9, L0OPS4l, VP- 
EXPERT7', NeXPERT7', HEARSAY-II171, E S P  Advisor47, TEIRESIAS72, 
EMYCIN73, EXSYS47i70 and FEL-EXPERT74. 

KEE, ART and Knowledge Craft are large hybrid tools whose authors did not center 
on some particular application field or strategy. Their aim was to create a powerful 
universal tool for the creation of narrower expert systems, shells for instance. The tools, 
however, require special hardware, viz. LISP-machines or VAX computers. 

Some shells are derived from expert systems such as KAS or FEL-EXPERT from the 
expert system PROSPECTOR30~75 - 77, EXPERT from the expert system CASNET78*79, 
HEARSAY411 from the expert system HEARSAY-I18' (a system for understanding 
speech) and EMYCIN from the expert system MYCINB1*BZ. 

EXSYS7' is an inexpensive and simple shell. It is used on XT/AT PC's or on 
VAX/VMS minicomputers. It uses a frame and rule scheme of knowledge repre- 
sentation with a facility for organizing knowledge into hierarchies. The implementation 
language is LISP or C. 

FEL-EXPERT system, which has been developed at  the Faculty of Electrical Engi- 
neering, Czech Technical University in Prague, is now available in several versions at 
several types of minicomputers and personal computers. This is a shell with the highest 
number of installations in Czechoslovakia. 

More detailed overviews of existing state-of-the-art expert systems, shells and 
hardware can be found in publications by Hayes-Roth and coworkersB3, Gevartef14, 
Waterman'', Harmon and coworkersB6, Holme and PierceB7, and Wade and coworkersB8. 

2.3.4. A New Approach to Problem Solving by Means of Neural Networks 

Today's mass-scale produced computers starting from the Notebook category to vector 
and parallel supercomputers are set up following the von Neumann architecture. Any 
computer comprises a central computer unit, memory (which contains instructions for 
operation management and data files) and busses through which there pass data from 
input or output devices such as the monitor, keyboard or printer. A von Neumann-type 
computer works sequentially and follows a precisely defined program. Furthermore, it 
has a direct access to the memory and exhibits a high arithmetic accuracy and a high 
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reliability. This kind of computer performs in an outstanding way in solving well-defi- 
ned problems by using algorithms based on procedural logic, but it is not so good in 
simulating human cognitive abilities such as pattern recognition, speech understanding, 
decision making, learning, inference, induction, association, and handling incomplete 
(uncertain or noise-containing) information. 

A solution to these artificial intelligence problems may be in computers with the 
neural architecture, which attempt to simulate the way human brain functions. The 
hardware solution is at its infant stage but there exist a number of simulation programs 
which can be implemented on von Neumann-type computers. This approach is highly 
acknowledged because it enables one to get into the basic functions of neural networks. 
However, the principal asset of neural networks, viz. parallel architecture, is lacking 
there. 

Neural networks are  a relatively young part of artificial intelligence but their study 
opens up never-thought-of opportunities in their development. The history of these 
networks is even longer than that of electronic computers. The British scientist Turin8’ 
examined theoretically the possibility of imitating the function of the human brain as 
early as 1936. In 1943, McCulloch and Pitts” set up an electronic model of the brain 
cell - the neuron, and in the sixties, Rosenblatt developed the so-called single-layer 
perceptron” (abstract system), which is a simple network of neurons capable of 
responding to external models and identifying features in which these resemble one 
another. In 1968, Minsky and P a ~ e r t ~ ~  demonstrated that there exist cases which the 
perceptron fails to discriminate. In 1982, Hopfield developed an interesting model 
which was later named after himg3. In 1986, Rumelhart, Hinton and Williamsg4 analy- 
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zed also multilayer perceptrons. The structure of a neural network as a computer or 
algorithm system is shown in Fig. 1, demonstrating the input and output layers between 
which one or more so-called hidden layers occur. On these layers there proceed the 
sorting operations; it is impossible, from the result to infer back in a detailed manner 
what took place on the layers. It is a limitation of this neural network that the signals 
can only be transmitted forward to the next layer. 

Neural networks are in principle not programmable but they learn by training and 
they behave accordingly. Their learning ability is so organized that a known pattern is 
entered at the input and the corresponding results is formed at the output. The weights 
w are varied by means of a suitable algorithm until the network forms a result which 
approaches the input pattern. The ability to learn is an important property of the human 
brain, and it can be derived from some changes at the boundary of the junction between 
neurons (synapse). Technically, this process is accomplished in neural networks so that 
a weight w is attributed to the junction between neurons. During the learning, the 
weights are vaned according to the network model and according to a given algorithm 
in time. When the learning process is terminated, the weights are fixed and are not 
changed any more. Another important property of the human brain is the associative 
memory. The so-called Hopfield networks95 - 97 function as binary associative memo- 
ries with symmetrical weights and feedbacks of each neuron to all the remaining 
neurons. The networks are one-way and are most frequently applicable to problems 
which are binary in their nature. The weights are determined by training and calculated 
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from the value of the input vector of the input pattern (Fig. 2). The best-known learning 
algorithm for these neural networks is the back propagation algorithm. 

The next kind of neural network after K ~ h o n e n ~ ~  is referred to as the feature map. 
Here the elements from the output layer are suitably mutually arranged into a two- 
dimensional lattice. An algorithm attributing neighbouring output elements to patterns 
according to their similarity is used. Self-organization takes place during the learning 
process, and Kohonen’s network does not need any help. It is used in solving complex 
pattern recognition problems. Its drawback is in the fact that the training is rather time- 
consuming. 

2.4. UNDERSTANDING NATURAL LANGUAGE AND COMMUMCATION WITH MACHINE 
IN NATURAL LANGUAGE 

Natural language is the most perfect tool in knowledge representation. Great attention 
is therefore devoted to understanding it. The basic goal is to set up a program that 
would “understand” sentences in natural languages, entered, for instance, from a termi- 
nal. 

The basis in solving this problem is the natural process of human reasoning, which is 
transferred, by using artificial intelligence tools, as a process of knowledge repre- 
sentation (it is a unification of the language of representation of meaning and language 
of representation of sense) with the possibility of combining language structures 
(machine reasoning) and also of interpreting them in the inference engine mechanism. 
The language structure understanding proceeds in a cyclic process and some authors 
refer to this as the hermenautic cycle98 which consists of tentative understanding, the 
understanding proper, and revised understanding. There exist several systems for un- 
derstanding language structures (text and speech) which are based on text models -the 
general model of the standard theory of ~nderstanding~~,  the model of approaches to 
text decomp~si t ion~~,  Charniak’s model of text understandinglW, and the model of the 
theory of directional text recognition”’. 

3. APPLICATION OF ARTIFICIAL INTELLIGENCE IN CHEMISTRY 

The various artificial intelligence methods and algorithms can also be used to solve 
practical problems in chemistry. The development of applications of artificial intelli- 
gence in chemistry proceeds virtually in parallel to the development of chemometrics, 
which is based on statistics and numerical calculations. 

The most important artificial intelligence methods employed in chemistry include: 
I) The use of chemical knowledge (expert systems) and neural networks in 
a)  structure elucidation, 
b) synthesis planning, 
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c )  elucidation of quantitative structure-biological activity relations (QSAR) and 

d) experiment planning. 
2) Intelligent instrumentation and robotics. 
3) Chemical databases and retrieval systems. 
4) Intelligent tutorial methods. 
5 )  Processing of sensoric data and natural languages. 

quantitative structure-chromatographic retention relations (QSRR), 

3.1. STRUCTURE ELUCIDATJON 

One of the first tasks of artificial intelligence in chemistry was structure elucidation 
based on spectral data. Elucidation of the structures of compounds which have been 
obtained synthetically or by isolation from natural material is among the most 
important problems of contemporary chemistry, and spectral methods play a prominent 
role in this problem solving. Such spectral methods include, in addition to X-ray 
diffractometry which directly determines the structure, also mass spectrometry (MS), 
electronic spectroscopy (in the ultraviolet and visible regions), vibrational spectroscopy 
(infrared and Raman spectroscopy) and nuclear magnetic resonance. 

A rational application of molecular spectroscopy to structure elucidation is condi- 
tional on the ability to obtain spectral data by the purely theoretical way with an accu- 
racy which is sufficient in comparison with the accuracy attained experimentally. The 
procedure in the structure elucidation is such that the spectrum of the unknown 
compound is taken, and a theoretical calculation of the spectrum is performed for the 
presumed (hypothetical) structure. According to the better or poorer agreement between 
the theoretical and experimental spectra the hypothesis is then adopted or rejected. 

Automatic structure elucidation methods can be classed in three categories: direct 
library search (direct database t e c h N q ~ e s ) ' ~ ~ ~ * ' ~  - lo5, indirect library search (pattern 
r e ~ o g n i t i o n ) ~ ~ 1 ' ~ ~ ~ ~ ~ ~ ~ ,  and expert systems. 

In the direct library search, the spectrum of the unknown is compared with a 
collection of reference data by using search algorithms. The search is largely sequential 
or in hierarchic treedo5. 

In the indirect library search, the pattern recognition methods are based on the 
principle that organic compounds can be classed, with respect to their spectra of some 
kind, into groups (classes) which have a certain substructure. 

Expert systems attempt to encode the logic of visual spectra interpretation, as done 
by the expert, into automated computer routines. 

3.1.1. Overall Strategy of Structure Elucidation by Means of Expert Systems 

The overall strategy of computerized elucidation of chemical structures comprises four 
steps4$ '08: 
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I) INTERPRETATION of the spectrum to obtain the probable substructures 
2) GENERATION of proposed structures containing the probable substructures 
3) PREDICTION of spectra for the proposed structures 
4) RANKING of the proposed structures by comparing the predicted and observed 

Spectrum interpretation to obtain the probable structures is done by correlation and 
consistency testing. By correlation, the possible structural fragments (substructures) are 
derived by using some spectral method or combination: MS, I3C NMR, ‘H NMR, IR, 
Raman and UV spectra (this arrangement corresponds to the decreasing information 
entropy of the spectrum). Correlation provides automated interpretation of the spectrum 
so that both the precise and the feasible structural fragments which are related to the 
form of the molecule should be disclosed. This interpretation is done by means of 
identification algorithms, viz. the AND/OR tree identification algorithm, the network 
algorithm or the matrix algorithm. 

The AND/OR tree identification algorithm is the most popular, presumably owing to 
its clear internal structure and the rather short computing time necessary to identify the 
structure fragments. 

Network algorithms resemble networks with extended internal logic connections. 
The internal structure of such algorithms is extremely intricate. 

In matrix algorithms, the correlation parameters (group functions, chemical shifts) 
are stored as fields in computer programs. This kind of identification algorithm is best 
suited to computer processing because their inner structure is quite clear and the 
computer time necessary to identify the fragments is short. The efficiency of the three 
kinds of identification algorithms is difficult to compare due to their “diffuse” nature 
and, to some extent, because they also mirror the algorithm designer’s skills and expe- 
rience. 

Spectral parameters which are taken into account during the empirical interpretation 
of the spectrum are closely related to the spectroscopic technique of choice. At least 
two parameters are used to describe an absorption band: its position and intensity. 
Other spectral band parameters are also frequently employedlOg*llO: the half band width, 
the interaction constant, etc. A decisive factor is the band intensity because it depends 
appreciably, e.g. in IR spectroscopy, on the sample preparation procedure and on the 
sample concentration. This problem can be bypassed by the so-called self-norma- 
lization’”, which consists in standardization of each band intensity (if this obeys 
Beer’s law) with respect to the most intense band to which a value of 100% is attri- 
buted. Of importance are the quality of available spectra-structure correlations as well 
as the character of the spectral methods. Mass spectra are considered to be the most 
informative. 

The consistency test usually employs cross-correlations of results obtained by means 
of different spectroscopic techniques. The results of correlation can confirm, comple- 

spectra. 
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ment, or rule out any substructure. This depends on the identification power of the 
method in question (e.g. the CH3-CtO substructure suggested based on 'H NMR 
spectroscopy must be rejected if no carbonyl group signal is present in the IR 
spectrum). Consistency tests can use, in addition to cross-correlations, various 
programming conditions based on a built-in chemical theory, chemical stability, etc. 
The aim of all of them is to reasonably reduce the recognized substructures assuming 
that none of the chemical groups present in the molecule under study is ruled out. 

Structural assembly involves combination of substructures into a meaningful total 
structure (tentative or candidate structure). Structural assembly relies on the creation of 
all the possible structures compatible with the detected substructures, with empirical 
rules, and with the stored chemical bonding and chemical stability theory. This can be 
organized in various ways. The most sophisticated structure-generating program is 
GENOA108*112, which can be combined with STEREO program in generating stereoi- 
somers of the proposed structures (DENDRAL project1l3). GENOA solves the structure 
problem by using a constructive substructure search algorithm. 

In spectrum prediction, selected spectral features or the entire spectrum are predicted 
for the candidate structure. In the final step the predicted and observed spectra are 
compared. If they are identical, the candidate structure is the true structure. Spectrum 
prediction and spectra comparison actually constitute another consistency test. 

3.1.2. DENDRAL Project and Other Expert Systems 

Automated, computer-assisted structure elucidation was performed at Stanford 
University in 1969 in relation to the interpretation of mass spectra. Since then the so- 
called DENDRAL p r ~ j e c t ~ ' ~ * ' ' ~  has been developing and improving constantly. The 
advanced versions of this expert system116 employ other data as well, e.g. 'H or 13C NMR 

The DENDRAL system knowledge base relies on molecular chemistry (atoms, their 
bonds and stability), on mathematical chemistry (graph theory - constructive enume- 
ration of molecular graphs1l4>'" - lZ), and on spectroscopy (rules of spectroscopic 
methods). It also involves contextual properties of sample (its origin, way of sepa- 
ration) and rules for the evaluation of the closeness of relation between the observed 
and predicted values. 

The inference mechanism of the DENDRAL system works encompasses three major 
stages (Fig. 3): 

I) Planning - the substructure conditions are derived from available spectral and 

2) Generation - a combinatorial algorithm generates candidate structures which are 

3) Testing - the candidate structures are revised by using heuristic criteria, and the 

data117 - 122 

chemical data 

compatible with the substructure conditions 

structure which is best consistent with the data is selected. 
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. 
SPECTRUM 
SYNTHETISOR 

DENDRAL was initially designed for mass spectra interpretation. Of all spectral 
techniques, mass spectrometry is least affected by stereochemical facton, and thus it is 
best applicable to structure analysis. However, the simultaneous development of 
STEREO program provided tools for representation and manipulation of configuration 
chemistry and offered the opportunity to define substructure characteristics involving 
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FIG. 3 
Function chart of DENDRAL in structure elucidation 
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stereochemistry in 13C and 'H NMR spectra. To date, DENDRAL is the most widely 
used expert system with the help of which, thousands of chemical structure analyses 
have been performed112 - 120*123 - 130. The possibility of continual extension of its 
knowledge base is among the assets of this system. 

In 1976, Buchanan and c ~ w o r k e r s " ~ ~ ~ ~ '  set up the Meta-DENDRAL program which 
serves automated acquisition of knowledge from structure chemistry and its inclusion 
in the DENDRAL knowledge base. Using a large number of entered spectrogram- 
structure pairs, Meta-DENDRAL sets up, for a given class of molecules, rules 
concerning relations between types of spectrograms and types of structures. Again, the 
system workq via the planning-generation-testing sequence. At present, Meta- 
DENDRAL enables automated creation of rules for mass ~ p e c t r a ~ ~ ' ~ ' ~ ~  and for 13C NMR 
spectra133. 

The success of the DENDRAL project undoubtedly stimulated other research centres 
which resulted in additional expert systems, whose overview is presented in Table I. A 
brief description of interpretation of spectra by means of these systems can be found in 
various re~iews35~1Q13~~135. 

developed PAIRS system for the interpretation of 
spectra. PAIRS uses interpretation rules formulated in the special CONCISE language, 
which is a form of the binary decision tree. The rules are then compiled by a 
FORTRAN program to be used in the given interpretation program. At our laboratory 
we are dealing with a modification of a PAIRS system version designed for the 
interpretation of IR spectra of biologically active  substance^'^^. 

In conclusion, the overall structure elucidation strategy of the various expert systems 
given in Table I can vary somewhat; the largest differences are in the kind of the 
interpretation program, in the way of reducing the solution and also in the interaction 
of the user with the system. CRYSALIS191, and expert system designed for the eluci- 
dation of the tertiary structure of proteins based on their X-ray diffraction crystal- 
lographic map, is an exception: graphic representation of the system was omitted in 
CRYSALIS because of the high complexity of protein molecules. CRYSALIS provides 
hypotheses of various kinds - atomic (atom positions), apical (position, composition 
and tilting of peptides), skeletal (secondary structure kind) and segmentary (secondary 
structure linking). The knowledge base includes the primary structures of proteins, X- 
ray diffraction maps, and chemical rules. 

Woodruff and coworkers'49 - 

Heuristic rules are hierarchized into three levels7: 
I) Strategic rules, determining which of a multitude of tasks is to be performed by 

2) Tactical rules, determining how to perform the given task in the optimum way 
3) Source rules, which actually comprise the expert knowledge of X-ray diffraction 

the system 

analysis. 
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The inference mechanism uses the agenda control. A bank of hypotheses which have 
different levels and weights is maintained continuously. The system responds to 
changes occurring in the agenda and does not proceed in an entirely targeted manner. 
The system stops running the moment a hypothesis with the desired degree of certainty 
is found. 

3.1.3. Structure Elucidation by Means of Neural Networks 

Application of neural networks to the interpretation of spectra offers new views upon 
the computerized chemical structure elucidation. Thomsen and MeyeI.200 trained neural 
networks to the resolution of lH NMR spectra of alditols by a back-propagation algo- 

TABLE I 
Expert systems and kinds of spectral information handled by them 

Program System MS IR 13c NMR 'HNMR uv Raman language References 

DENDRAL 

Meta-DENDRAL 
CHEMICS 
CASE 
PAIRS 

STREC 
SEAC 
ASSIGNER 
EXSPEC 
EXPERTISE 
SICIAB 
STIRS 

Damo's 
CRISE 
FOSSIL 
SCANSPEC 
IRIS 
CTREZE 
SISTEMAT 
CRYSALISb 
Others 

Curry'sU 

X 

X 

X 

X 

X 

X X 

X 

X 

X X 

X 

X 

X 

X X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X X 

X X 

X 

X X 

X X 

X 

LISP 

LISP 
FORTRAN 
FORTRAN 
FORTRAN 
PROLOG 
FORTRAN 
FORTRAN 
FORTRAN 
PROLOG 

AIRELLE 
LISP 
LISP 

FORTRAN 

X 

X 

PROLOG 

112 - 120, 
123 - 130 
116, 131 - 133 
136 - 142 
143 - 148 

149 - 162 
163 - 168 
4, 169, 170 

174, 175 
176 
59 
177 
178, 179 
180 
181 
182 
183 
184 
185 - 188 
189, 190 
191 
192 - 199 

171 - 173 

Interpretation of GC/IR/MS data. Interpretation of x-ray data. 
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rithm. KvasniEka201*202 used a three-layer neural network represented by oriented 
graphs in the classification of chemical shifts in the 13C NMR spectra of acyclic alka- 
nes. Extensive studies in spectroscopy have been undertaken by Curry and 
Rumelhartm3 and by Munk and coworkerszM- '06, who employed more than 32 000 MS 
and about 6 700 IR spectra. The authors attempted to predict all the possible structure 
fragments relevant to the spectra. Bos and Webe?07 found that neural networks can be 
trained for fluorescence spectroscopy better by means of a back-propagation algorithm 
than by means of a genetic algorithm. TuSar and ZupanZOB applied hop field'^^^^^^ and 
Hamming'szm networks to the interpretation of IR spectra. The analysis of the DNA 
structure is another field of application of neural networks. Examination of the 
sequence of nucleotide bases in DNA by means of neural networks, with the determi- 
nation of regions which are coded for proteins, is done at the National Institute in Los 
AlamoszlO. 

More detailed reviews of applications of neural networks to structure elucidation can 
be found in papers and monographs by Zupan and G a ~ t e i g e r ~ ~ s ' ~ ~ ,  Wythoff and 
coworkers212, and Otto and HOr~hner '~~. 

3.1.4. Combination of Artificial Intelligence Methods with Theoretical Quantum 
Chemical Calculations 

In addition to artificial intelligence methods, quantum chemical calculations can also be 
used to establish some spectral properties of candidate structures214 - '16. The appli- 
cability of semiempirical methods (PPP, CND0/2, INDO) and nonempirical methods 
(ab initio) is dubious or at least limited. The quantum chemical calculations of theo- 
retical electronic spectra must include the configuration interaction (CI) approach'". In 
this, the so-called configuration interaction wave function is considered; this is a linear 
combination of Slater determinants corresponding 
configurations: 

M 

\y 1 A k y k  
k 

to different (excited) electronic 

(4 

where M is the number of configurations. Electronic configurations \ y k  (Slater determi- 
nants) represent the various ways of electron distribution over all orbitals. The confi- 
guration Yo corresponds to the ground state configuration, the other Y's are the 
configurations of excited states. The excitation energies can be found from the diffe- 
rences of the total energies of the excited and ground states'". In the Pariser-Parr 
limited configuration interaction method219, only the determinants of monoexcited 
configurations are included in the wave function series. A modified CNDO/S method 
where the excited states are calculated by means of CI has been developed by Del Bene 
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and Jaff6220; this method is now most widely applied to the calculation of excitation 
energies. 

Vibrational (IR) spectra are calculated theoretically by using ab inirio2l5 and 
semiempirical (CND0/2, MIND0/3) methods. The problems solving then consists in 
obtaining a dependence of the total energy and dipole moments on the displacements 
from the equilibrium geometry along one, two or more coordinates. The dependences 
so obtained can be applied to any level of the vibrational spectra theory. The harmonic 
approximation is mostly used for polyatomic systems; in particular, the matrix GF 
method is employed where the harmonic vibrational wavenumbers are obtained by 
solving the equation221 

where F i s  the force constant matrix, G is the kinematic matrix and I is the unit matrix. 
The task of the ab initio calculation then only consists in determining the matrix of 

quadratic force constants F and/or the equilibrium geometry requisite to calculate the 
elements of G matrix. An ab initio method for the calculation of force constants has 
been developed by Pulay22~2V (TEXAS program). The ab initio calculation of the 
quadratic and cubic constants has advanced recently, and this might contribute to the 
solution of the highly intricate problem of anharmonicities of polyatomic molecules. 

The NMR spectral parameters are also calculated by semiempirical methods - 
CND0/2, MIND0/2, MIND0/3 - as well as by ab initio methods. In the theory of 
interactions between nuclear spins according to R a m ~ e y ~ ~ ~ ,  three basic types of inte- 
raction are considered. The most important of them is the Fermi contact interaction 
between the spins of the electron and the spins of the nucleus. This constant is calcu- 
lated by the second order perturbation theory, by the incomplete perturbation theory 
and by the maximum overlap methodzz. A method for the calculation of nuclear inte- 
raction constants by the CNDO and INDO methods is described in the monograph by 
Pople and Beveridge226. The monographzz7 contains an extensive chapter by Segal on 
the application of approximate methods to the calculation of NMR spectral parameters. 
The BBC technique or the Lindeman-Adams method'" can be employed in the NMR 
spectra prediction. Quantum chemical methods can also be applied to the interpretation 
of the chemical shifts229*u0. 

Spectral data interpretation by means of artificial intelligence methods usually requi- 
res the processing of a vast quantity of generated candidate structures. This might be 
simplified considerably by suitably combining the artificial intelligence algorithms, 
which are based on the principle of structure assignment to spectral characteristics, and 
quantum chemical methods for the calculation of spectral characteristics of candidate 
structures. Quantum chemical methods can also find application when dealing with the 
effect of the remainder of the molecule, or the substructural environment, on the candi- 
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date structure fragment under examination (e.g., in NMR spectra, the atom studied is 
affected by the substructural environment as far as the fourth bond). Quantum chemical 
methods also enable the effect of medium (matrix) on various spectral characteristics to 
be modelled"' - "'. 
3.1.5. Elucidation of Quantitative Structure-Biological Activity Relations (QSAR) 

and Quantitative Structure-Chromatographic Retention Relations (QSRR) 

Among the most difficult tasks of QSAR or QSRR studies is to find suitable molecular 
or submolecular characteristics of substances which determine their biological acti- 
vityZ9 - 242 or retention b e h a v i o ~ ~ ~ ' ~ ~ ~ ~  - 245. The application of artificial intelligence 
to this problem solving was the concern of Klopman246, who developed a program 
which automatically identifies, tabulates and statistically evaluates substructures rele- 
vant to the given biological activity. Furthermore, Klopman and Hendersonz4' set up 
and expert system for QSAR studies based on graph theory. Smith and Burrz4' deve- 
loped the expert system CRIPES which is well suited to the prediction of retention data 
in reverse-phase high performance liquid chromatography, whereas Milnez49 developed 
the expert system CATHIE for the interpretation of GLC retention data. 

Neural networks have also been used to study the structure-biological activity rela- 
tion250pu1. It turns out that neural networksuz, like rule-based expert have a 
predictive ability which is better than that of the conventional methods for examining 
the structure-biological activity or structure-chromatographic retention relation (the 
multiparameter linear regression254 or discriminant analysisu5). 

3.2. SYNTHESIS PLANNING 

Although organic synthesis, as one of the oldest fields of chemical sciences, was highly 
successful in complex syntheses of natural substances, it was not until the early 
seventies that, owing to the research efforts of E. J. Corey, the basic principles of 
systematic reasoning and retrosynthesis analysis began to be used in the planning of 
organic syntheses. Over the past twenty years, synthesis planning developed from pure- 
ly  inductive approaches to a highly sophisticated branch of science with various stra- 
tegies of general synthesis problem solving. Equally important is the topical 
requirement of elaboration of a formal methodological approach which, in conjunction 
with the quantum chemical approach combined with statistical thermodynamics 
methods, would reflect the wealth of existing chemical knowledge in a unified and 
consistent manner. This formally methodological approach is based on tools of non- 
numerical mathematics (graph theory, topology, formal languages, etc.) and enables its 
notion and term apparatus to be rationalized, unified and formalized. The first major 
success of this mathematical chemistry was the solution of enumeration of chemical 
structures1upu6. 
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Enumeration of molecular graphs has found important applications in structure eluci- 
dation and algorithmizetion of generation of alternative structures which is based on 
data obtained by spectral methods (DENDRAL project). 

The graph-theoretical approachB7 - 264 appears to be a suitable mathematical tool 
also in synthesis planning. This approach not only enables formalization of the 
description of molecules but also provides an illustrative formalism for the description 
of chemical reactions. Molecules are represented by a molecular graph. This is an 
unoriented pseudograph with multiple edges and loops, where the vertices are evalua- 
ted with alphanumeric strings containing letters (e.g. symbols of atoms) and numerals 
taken from a dictionary of symbols. Chemical reactions are expressed by means of 
reaction graphs involving the formation and decay of bonds (in ionic and radical 
reactions) and lone electron shifts during the chemical reactions. 

However, the problem of chemical reactivity, which in the model means seeking for 
reasonable chemical transformations for the given molecular system, remains open. 
Within the formal method this problem is approached in various ways. Two major 
approaches include 
- first generation algorithms 
- second generation algorithms. 
In first generation algorithms there is given a dictionary of reactions - transforma- 

tions which accompany a segment of the molecule - synthon (subgraph of the mole- 
cular graphz5) to the resulting product subgraph. The effect of environment for the 
given transformation is evaluated (“marked”) by using heuristic rules. The molecular 
graph is analyzed with respect to the occurrence or nonoccurrence of a certain 
subgraph: if the subgraph exists, it is replaced with another subgraph by using a substi- 
tution rule, whereby the product molecular graph is obtained. This approach is feasible 
in the forward, synthetic direction, as well as in the backward, retrosynthetic direction. 
It is typical of this kind of algorithms that requirements put on the knowledge of the 
chemical reactivity are minimal and only occur within the heuristic rules marking the 
transformation with respect to the effect of environment. 

When using second generation algorithms, the molecules are analyzed systematically 
with respect to the occurrence of so-called strategic bonds (double and triple bonds and 
bonds involving hetero atoms). Furthermore, the kinds of chemical reactions which are 
feasible at these bonds are regarded. Unlike first generation algorithms which handle 
immediately generated reactions, second generation algorithms use a more general 
viewpoint based on so-called type reaction mechanisms. The synthons of the molecule 
under study are not defined in advance; instead, they are generated based on potentially 
applicable reaction mechanisms. Reduction of the high number of chemical transforma- 
tions d e r i ~ e d ~ ~ * ~ ~  is achieved by means of an efficient estimate of reactivity of the 
molecule, viz. by using heuristic rules which correlate the substructures with the 
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reaction mechanism type. Hence, the choice of reactions can be limited by using tools 
obtained by artificial intelligence methods. 

Algorithms of both generations have been implemented on computers and first and 
second generation programs have been so obtained. 

3.2.1. Computerized Synthesis Solving 

First generation programs have been used in research and in the industry since the late 
sixties (LHASA, used by Du Pont manufacturers, and SECS, used by Merck Sharp & 
Dohme manufacturers). Logically oriented second generation programs, formed based 
on mathematical models of logic structure (e.g. CAMEO, EROS), have been created in 
parallel. An overview of programs of the two generations is presented in Table 11. 

Program LHASA268 - 270 was preceded by program OCSS271, which was developed 
a t  Harvard University under the leadership of E. J. Corey. The major part of the system 
has been set up in FORTRAN whereas information concerning organic reaction is in a 
special language CHMTRN. LHASA system, and also SECS272 - 274 and CASP268 
systems, employ large organic reaction databases and the CAS Online search system. 
The aim of the systems is to find the “optimum” synthesis route to the target molecule 
by retrosynthesis analysis. This is retrosynthesis analysis from the target molecule 
structure to the starting materials. Another program, 277 developed by W. 
L. Jorgensen a t  Purdue University, works in the synthesis direction. This reaction-simu- 

TABLE I1 
Programs for computerized synthesis solving 

Program References 

LIIASA 268 - 270,284 
OCSS 271 

CASP 268 
SECS 212 - 214 

CAMEO 275 - 277,286 
EROS 278 - 280 
CICLOPS 28 1 
SYNGEN 285 
AHMOS 287, 288 
ASSOR 289 
SYNCHEM 290,291 
SY NSUP-MB 292,293 
CARSA 242 
RETROSYN 294,295 
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Program References 

IGOR 296 
IGOR 2 297, 298 
RAIN 299, 300 
PASCOP 301, 302 
LILITH 303 
KASP 304 
MASS0 305 
MICROMASSO 306 
sos 307 
AlPHOS 308 
PSYCHO 309 
MAROCO 60 
MAPOS 310 
DARCSYNOPSIS 311, 312 
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lating program is a tool which conveniently supplements the above-mentioned LHASA, 
SECS and CASP programs. 

A next program, EROS278 - =', can serve synthesis, analysis as well as reaction 
simulation. An example of a complex use of LHASA, SECS, CASP, EROS and 
CAMEO programs is the work of NevalainenB1, who studied the synthesis of antifugal 
5,6-dihydro-1,4-oxathiines and 5,6-dihydro-1,4-dithiines. Brief characteristics of 
LHASA, SECS, EROS, CICL0PSB2 and other programs can be found in r e f ~ ~ ' 3 ~ ~ .  

While LHASAB4 and SECS are knowledge-based programs, EROS, Hendrickson's 
SYNGEV5, CAMEOm, AHMOSB7tm and MSORB9 are logically oriented programs. 
Another system, SYNCHEM by Gelernter and c ~ w o r k e r s ~ ~ ~ ~ ~ ~ ~ ,  is a large knowledge- 
based program which solves problems heuristically by using inductive and deductive 
machine learning programs (Isolde and Tristan). The approach to proposing synthesis 
procedures by means of the noninteractive program SYNSUP-MB by Bersohn and 
c ~ w o r k e r s ~ ~ z ~ ~ ~  is also interesting. 

At present there exist new logically oriented models which are used in conjunction 
with quantum chemical calculations, whose algorithms are based on potential energy 
hypersurfaces. Very likely, these models will form a basis for third generation 
progra ms3l3s3 14. 

3.2.2. Synthesis Planning by Using Neural Networks 

Neural networks can serve as a supplement to expert systems, particularly where rules 
describing chemical reactivity are not easy to formulate. 

Luce and Govind315 developed a hybrid system which enables planning of syntheses 
of new molecules with retrosynthesis analysis. Elrod and coworkers316 published an 
interesting paper concerning chemical reactivity in relation to the distribution of meta 
products of nitration of a series of monosubstituted benzenes. Input information into the 
neural networks was encoded in the form of the BE matrix by Dugundji and Ugi317, 
which is an analogue of adjacency matrices in graph theory. Zou and coworkersz9 
attempted to set up a model for the reactions of nitration of aromatics by using graph- 
theoretical transformations. A similar model has been set up by the authors318, who 
represented neural networks by means of acyclically oriented graphs. Using this model, 
the authors were able to predict the yields of meta products of nitration of a series of 
monosubstituted benzenes. 

3.3. EXPERIMENT PLANNING 

Experiment planning has been receiving interest only lately. In analytical chemistry, 
attention is paid to the planning of simple experimental  procedure^^^*^^^- 321 such as the 
choice of conditions for mixture separations by HpLC322. Successful are the expert 
system SPINPRO implemented in LISP language and serving the optimization of 
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cen t r i fuga t i~n~~ ,  and the expert system implemented in PROLOG language which 
serves in the planning of HPLC separation of various steroids324. Varian Associates 
manufacturers developed ECAT system for solving various HPLC problems3“. An 
overview of additional expert systems in chromatography can be found in refs3% - 332. 

Relevant to chemical technology are problems associated with the planning of 
chemical reactions in the direction of catalytic synthesis333 of the desired products, as 
well as problems related to the development of algorithms for technical diagnostics334. 

For instance, SCOPE system3” for automated synthesis has been applied to the 
depropanization of the product from the production of ethylene (with a simultaneous 
separation of hydrocarbon fractions lower than C, and also higher than C4). 

Expert systems applied in chemical engineering also attract interest. CONPHYDE335 
assists in the choice of a suitable method for liquid-vapour calculations. SCCES 
enables the calculation of the corrosion risk of stainless steel reactors during cracking, 
whereas FALCON is capable of online analysis of a large volume of data in the 
planning of chemical processes3’. CAMBI@36 has been developed for the simulation 
of bioprocesses. Neural networks have also been applied with success to chemical 
process c o n t r o ~ ~ ~ ~  - 342. 

3.4. INTELLIGENT INSTRUMENTATION AND ROBOTICS 

Combination of artificial intelligence methods with process control and optimization 
methods343 - 345 has been leading to the development of intelligence-controlled proces- 
ses and intelligent instrumentation. 

Intelligence-controlled processes have found application e.g. in e lec t r~chemis t ry~~ 
and in the control of chemical processes in A rapid development of intelli- 
gent instrumentation can be expected in the nearest future particularly in analytical 
c h e m i ~ t r y ~ ~ ~ ~ ~ ~ .  This technique exhibits features such as automatic error detection, 
calibration, temperature compensation, sample composition interpretation, etc. This, 
however, places demands on the development of new chemical sensors or biosensors. 
A block diagram of instrumentation with intelligent control350 is shown in Fig. 4. 

The use of artificial intelligence methods in intelligent chromatographic instru- 
mentation has been discussed in  ref^^'^?^'^. 

An expert system which selectively acquires, optimizes and interprets large volumes 
of data in real time”’ has been developed for analysis by triple quadrupole mass 
spectrometry. 

The combination of expert systems with robotics is another field of active research in 
artificial intelligen~e~’~. Robot systems in conjunction with expert systems are used, for 
instance, in chelatometric and in ch r~matography~~~ .  Data on various types 
of automated laboratory equipment and automated systems with robotic techniques can 
be found in papers and monographs by Dessy1p2, Kramer and F u c ~ s ~ ’ ~ ,  
Barke~10~357, N e ~ m a n ~ ’ ~  and Insenhour and For example, PASS 
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system358 serves to optimize the synthesis and analysis of organic substances. Another 
automated system, APOCALYPSEz1', is designed for crystal growth for X-ray 
diffraction analysis. GASP s y ~ t e r n ~ ~ ' , ~ ~ ~  is used to optimize sample preparation for 
analysis. 

3.5. CHEMICAL DATABASES AND RETRIEVAL SYSTEMS 

The importance of databases (sophisticated information banks) and search systems is 
obvious also in chemistry. The use of artificial intelligence methods in chemical 
informatics for the analysis as  well as classification of chemical reactions will also be 
potentially important in the building and updating of databases and search systems. 
Another field of application of artificial intelligence is in its implementation as a tool 
for work with files. The user thus can, through questions and answers, define more 
specifically his or her demands during the retrieval of information, e.g., concerning a 
particular reaction. Artificial intelligence-based programs can also play an important 
part in  the protection of databases against computer viruses. 

Chemical reaction databases can be classed as general, subject-oriented and selective 
bases362. The largest general database is CASREACT (Chemical Abstracts Service, 
Columbus, U.S.A.) which contains more than a million reactions taken from 70 000 
documents. CASREACT can be employed in conjunction with the CAS ONLINE 
FILE. This is now the best information system over the world. Another large database 
is VINITI (Moscow), which is now available to Western users as well. The best known 
search systems include REACCS with seven databases, ORAC, OSAC, and SYNLIB363. 
DARC system364 for searching chemical substructures deserves particular attention. 

FIG. 4 
Block diagram of intelligent instrumentation. 1 
Sensors, 2 driving mechanism, 3 input and output 
interfaces, 4 microprocessor, 5 memory, 6 expert 
system shell, 7 knowledge base, 8 external expert, 
9 peripherals (monitor, printer, mouse, etc.), 10 
microcomputer 
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3.6. INTELLIGENT TUTORING SYSTEMS 

The increasing interest in applications of artificial intelligence methods in chemistry is 
also mirrored in the number of papers dealing with tutoring problems349. These include 
expert systems such as DENDRAL116~365~366, LHASA3", CAMM36s, and IDM369, 
which can be used as an interactive teaching system for students. Other expert systems 
are designed for tutoring on PROLOG l a n g ~ a g e ~ ~ p ~ ~  or for organizing work in analy- 
tical I a b o r a t ~ r i e s ~ ~ ~ ~ ~ ~ ~ .  

3.7. PROCESSING OF SENSORIC DATA AND NATUML LANGUAGE 

Although this problem may seem futurological, it has found application in chemistry. 
As early as 1979, an American company achieved A/D conversion of an IR spectrum 
by photographing the spectral image with a camera interfaced to a computer which 
accomplished the conversion by means of an artificial intelligence program. 

At present there exist several comniercial models of complex systems (Parallel 
Reader, Calera CDP 9000, Kurzweil k 5200) for text and image processing, which are 
equipped with dedicated microcomputers with a high capacity of the process memo- 
ry"'. These include high-performance sensors for bulk data processing making it 
possibble to handle various letter types including hand-writing. 

Other development trends are aimed at improving the resolving power of sensors. 
State-of-the-art coniputerized reading systems attain a rate of success of 90 to 96% in 
the identification of hand-written digits. A neural computer exhibiting a rate of success 
of 99.8 to 99.9% has been developed recently at Toshiba laboratories, while Hitachi 
manufacturers developed a system for speech recognition which is also based on the 
neural architecture; the device understands 3 000 words at a 95% rate of success. 

Voice recognition, particular in continuous speech, starts to be employed 
conimercially. For instance, Verbex Voice System manufacturers supply these systems 
for postal services in the U.S.A. 

Thcre exist now several computer programs for chemical text reading, such as SAM 
system developed at Yale University372. It must be stressed, however, that chemical 
text processing is a special problem because it involves three different kinds of 
information, viz. numerical, conceptual and structural, the complexity increasing in that 
order. 

The listening and intelligently talking computer is still a vision and will remain so 
l o r  some time. The major problem is the computer's ability to process speech, i.e. not 
only to decode the acoustic input but to understand the meaning of the sentences. 
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4. CONCLUSIONS 

Artificial intelligence methods can find wide applications in chemistry but they require 
computer techniques starting from the conventional systems based on von Neumann 
architecture to systems with combined architecture, which is obtained by crossing with 
neural computers, to neural computers themselves. 

Neural networks will be an important tool in the implementation of intelligent 
systems for the classification of chemical databases and prediction of properties of 
molecules. Advances in the research into artificial neural networks are expected in the 
nearest years to come; this can result in intelligent neural computers with millions of 
neurons (a new generation of computers) which will be able, after a training, to solve 
problems. Further progress should also concern the visual capability of robots, recogni- 
tion of patterns including handwritten text, transformation of written text into speech, 
and speech processing, which also includes understanding the meaning of the spoken 
sentences. 
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